Name \qquad Period \qquad

4.4- Notes- Constant of proportionality

(Rates/Ratios from Tables, Graphs, and Ordered Pairs)

I CAN...
\square Find constant of proportionality from a table
\square Find constant of proportionality from a graph
\square Find constant of proportionality from ordered pairs
\square Determine if two ratios (ordered pairs) create a proportional relationship from a table, graph, a given equation, and from real world scenarios.

Joe can do 10 multiplication problems in 5 seconds.
a) At this rate, how long should it take Joe to do 2 multiplication problems?
b) Create a table of values showing how long it should take him to do from 1 to 5 multiplication problems. Then graph the points on the table on the coordinate plane.

\mathbf{x} (number of seconds)	\mathbf{y} (number of problems)
0 seconds	
1 second	
2 seconds	
3 seconds	
4 seconds	
5 seconds	

c) What is the unit rate? \qquad
Constant of Proportionality exists when the ratio of two quantities in a table, graph, or ordered pairs simplify to the same unit rate.

To check if there is a constant of proportionality:

From Ordered Pairs/Table: make a ratio of $\frac{y}{x}$ for all ordered pairs. Then find the unit rate (divide y by x). The unit rate must be the same for all pairs.

From a Graph: Create a table of ordered pairs, then check all ordered pairs by dividing y by x.

Examples: Find the constant of proportionality, if it exists.
$(2,53),(4,108)$
$(15,9),(78,46.8)$

Fill in the missing values:

$$
\begin{aligned}
& (2,5) \text { and }(, \quad) \\
& (, 30) \text { and }(4,8) \\
& (3,100) \text { and }(5,)
\end{aligned}
$$

Do the tables below have constant of proportionality?

Days	0	1	2	3
Hours of Homework	0	4	6	9

x	y
0	0
1	5
2	10
3	15
4	20

x	y
0	0
4	11.2
6	16.8
8	22.4
10	2.8

Fill in the tables based on their constant of proportionality:
$Y=3 x$
C.O.P $=3.4$
C.O.P = \qquad

X	Y
0	
1	
2	
3	
4	

X	Y
0	
5	
8	
10	
11	

X	Y
0	
1	
4	12
6	
8	24

Make table for each line, then find the constant of proportionality. Which situation has a greater constant of proportionality?

Line A

Line B

X	Y
0	
2	
4	
6	

You want to buy some candy for your birthday party. You go to two different grocery stores and see the following special offers:

a) Complete the table for each offer. Graph each offer in a different color on the coordinate plane.

First Offer	
Pounds	Price
1	
2	
3	

Second Offer	
Pounds	Price
1	
2	
3	

b) First offer unit rate: \qquad
Second offer unit rate: \qquad

c) Which is the better deal for Salt Water Taffy?

How do you know? \qquad
7. The tortoise can walk $1 / 2$ a mile in $1 / 4$ of an hour.

The hare can run $11 / 2$ miles in $1 / 2$ of an hour.
a) Complete the table for each animal. Graph each animal's rate in a different color.

Tortoise	
Hours	Miles

Hare	
Hours	Miles

b) Tortoise's unit rate: \qquad
Hare's Unit Rate: \qquad

c) Which animal is faster? \qquad How do you know? \qquad

Bob's Burger Barn has a special deal of 4 hamburgers for $\$ 6$.
a) At this rate, how much should it cost to buy 3 hamburgers?
b) Fill in the table to show the price for 0 to 5 hamburgers. Then graph the information.

x (number of hamburgers)	\mathbf{y} (price)
0	
1	
2	
3	
4	
5	

c) What is the unit rate? \qquad

Name \qquad Period \qquad
HW: 4.4
Determine if the table has a constant of proportionality, if so determine the value.

X	Y
0	0
1	3
2	6
3	9

X	Y
1	2
2	4
3	8
4	16

X	Y
1	5
2	10
3	15
4	20

Determine the missing value with the given tables that have a constant of proportionality.

X	Y
0	
1	13
2	
3	39

X	Y
1	26
2	
3	
4	

X	Y
4	
8	120
10	
12	

Use the equation to determine the table values, then identify the constant of proportionality.
$Y=2 x$

X	Y
0	
1	
2	
3	

Constant Proportionality=
$y=6 x$

X	Y
0	
1	
2	
3	

Constant Proportionality=

$$
y=15 x
$$

X	Y
5	
8	
10	
12	

Constant Proportionality=

Determine if the given ordered pairs create proportionality.
$(2,8)$ and $(4,60)$
$(1.5,6)$ and $(3.5,21)$
$(7,16.8)$ and $(10,20)$

Use the graph to determine table values. Then determine the constant of proportionality.

X	Y
0	
2	
4	
6	

Constant Proportionality=

Constant Proportionality=

Determine from least to greatest the constant of proportionality, given the graph.

Determine the graph lines of constant of proportionality and match them with the table.

X	Y
0	0
3	1
6	2
9	3

X	Y
0	0
2	3
4	6
8	12

X	Y
0	0
1	3
2	6
3	9

The Jones family drives 200 miles in 5 hours.
The Grant family drives 360 miles in 6 hours.
a) Complete the table for each family. Graph each family's rate in a different color.

Jones Family	
Hours	Miles

Grant Family	
Hours	Miles

b) Jones Family unit rate: \qquad
Grant Family unit rate: \qquad
c) Which family is driving faster? \qquad How do you know? \qquad

